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Expressions for derivatives of a dihedral angle with respect to positional parameters of the atoms involved 
are presented and their use with the propagation-of-error formula, in evaluating the standard deviation of 
a dihedral angle, is indicated. The expressions derived are valid in oblique and orthogonal frames of ref- 
erence. The approach outlined provides a greater flexibility in accounting for atomic positional variances 
and covariances than other treatments of the dihedral angle so far proposed. Inclusion of covariances of 
symmetry-related atoms in the equations presented is indicated. 

Several expressions for the variance of a dihedral angle 
have been published (P. J. Huber in Huber-Buser & Dunitz, 
1961; Stanford & Waser, 1972; Waser, 1973). These ex- 
pressions are given in terms of the bond distances and an- 
gles defining the dihedral angle and in one case an equa- 
tion utilizing components of the angle-defining vectors has 
also been presented (Stanford & Waser, 1972). With the 
exception of the relevant expression in Waser's (1973) ar- 
ticle the above equations are based on the assumption of 
isotropic variances of atomic coordinates. On the other 
hand, Waser's equation [equation (49); Waser, 1973] con- 
tains in a symbolic form functions of full covariance ma- 
trices of the distances and angles involved and may be ex- 
pressed in an oblique system of coordinates. It seems, how- 
ever, that in practice intermediate approximations may be 
preferable to the assumption of isotropic variances or to 
the use of a full covariance matrix. Thus, it may be desired 
to employ available standard deviations of atomic coor- 
dinates, when they are evidently anisotropic, or to take into 
account some of the covariances, when correlation coef- 
ficients are large, in such a calculation. Moreover, construc- 
tion of special Cartesian systems for this calculation (e.g. 
Stanford & Waser, 1972) either necessitates a transforma- 
tion of the covariances to such a system or makes the as- 
sumption of isotropic variances imperative. In order to 
avoid these limitations, derivatives of the dihedral angle 
with respect to the relevant fractional atomic coordinates 
are presented and their use with the propagation-of-error 
formula is indicated. 

It is also attempted to achieve a simple presentation of 
the results and to this end tensor algebra (e.g., Patterson, 
1959) is being employed, including the repeated-index sum- 
mation convention. 

The dihedral angle or, as often called, the torsional an- 
gle is given by 

= cos-  ~ (u x v) .  (v x w) 
lu x vl Iv × wl (1) 

as can be readily seen by an inspection of Fig. 1. Equation 
(1) can be rewritten, using the usual representation of a 
scalar product of two vector products, as 

A 
7: = cos- ~ (BC) (2) 

where 
,4 = (u.  v) (v.  w ) - ( u ,  w) (v.  v) 

B = (u.  u) (v.  v ) - ( u ,  v) ~ 

C =  (v.  v) (w .  w ) - ( v ,  wY. 

(3) 
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This representation of the scalar product of vector products 
is well known to be valid in orthogonal Cartesian systems 
and, as pointed out by Patterson (1959) and shown in the 
Appendix, it is in fact completely general. 

In order to evaluate the estimated standard deviation of 
r with the aid of the propagation-of-error formula [equa- 
tions (8)-(11) below] we require the derivatives of r with 
respect to the coordinates of the atoms involved as well 
as, in the general case, the covariances of these coordinates. 
Expressing the vectors, which define r, in terms of their 
contravariant components, we have 

I t  = l t k a k  , l l  1¢" = Xk(2) - -  xk(l) 
v = vkak, V ~ = Xkt3)-- Xkt2) (4) 
w = wkag, w k = xk(4)- xkta) 

where al, a2 and a3 denote the unit-cell vectors a, b and c 
respectively and X~m) is the kth component of the position 
vector of atom m. The required derivatives are therefore 

0r 0r Or Or Or 
b x ~ .  ?u s '  Ox~3~ .... Ov -~ Ow ~ 

Or Or Or Or Or 
O x f 2 ~ -  &,~ Ov s ' Oxb---~ = oW ~ ( 5 )  

where, upon differentiating (2), 

Or (OA A OB) 
- ~ u s  = K - - -  ~u ~ 2B cOu' 

0v ~ - K  0v ~ 2B 0v ~ 2C 

0~: ( OA A ~C) 
Ow ~ - K Ow ~ 2C 

with K =  - 1/[(BC) 1/2 sin r ] .  

l u cy  L3 
2 

Fig. 1. A schematic representation of the dihedral angle. The 
angle r is defined here as the angle formed between the unit 
normals u x v/lu x vl and v x w/Iv x wl to the planes passing 
through atoms 123 and 234 respectively. The sign of z is 
the sign of the tiiple product (u x v). w. 
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Noting that, e.g. ,  u .  v=u~vSgts=u~v, ,  where g~j---at ,  a s 
is the metric tensor of the crystal lattice and v~ = g l j v  J are 
the covariant components of v, we obtain the derivatives 
of A, B and C with respect to u s, v ~ and w s as given below 

3A 8B 
t~ll s - -  vsh23 - wsh22 8u s 

3A  OB 
OV s = ush23 .-b w s h ~ 2 -  2 v s h l 3  Ovs 

3A  t3C 
t~W s = v s h l 2 -  ush22 

- 2(u~hz~- vsh~2) 

. . . .  2(vsht~ - ush,2) (7) 

OV s - -  2 (vsh33  - -  wsh23)  

OC 
3-w~- = 2(w~h22- vshz3) 

w h e r e  h u - - u ,  u ,  h 2 2 :  v . v ,  h33 = w . w ,  h i 2  = u . v ,  h23 : v . w 

and h~3 = u .  w. 
Thus, if the atomic position vectors are given in terms 

of their fractional (contravariant) components, the co- 
variant components of u, v and w have to be evaluated with 
the aid of the metric tensor while if an orthogonal Car- 
tesian system is employed, equations (7) can be used as they 
stand. A definition of the directions of u, v and w other 
than that given in Fig. 1 and equations (4) will result in 
a modification of equations (5) only. 

We can now summarize the expressions for a2(O, the 
variance of a dihedral angle, which correspond to the various 
approximation levels mentioned in the introduction: 

G~(r)  = 

a ~ ( r )  = 

a~(r) = 

a~( r )=  

4 3 3 d r  O r  
s q 

Z Z ~, 3x~k) c~x~k)COV(X(k),X(k)), (10) 
k = l  s = l  q = l  

k=x ,=~ ~=~ a=l (3x[k) c~x~.) cov (xoo) ,xo , ) ) .  (11) 

Equations (8), (9), (10) and (11) are forms of the propaga- 
tion-of-error formula corresponding to the assumptions of 
isotropic atomic positional variances, diagonal covariance 
matrix, atom-block diagonal covariance matrix and a full 
covariance matrix respectively, thus covering all cases of 
practical importance. 

For  the sake of completeness, we indicate how the most 
general case, i.e. equation (11) including positions of one 
or more symmetry related atoms, can be formulated in 
practice. Equation (11) can be rewritten as a sum of 
quadratic forms 

4 4 
a2(z)= ~ ~ p(a~),C(~,)p(,)j (12) 

k = l n = l  
where 

Or 
P(~)s= ~x~) ' C~,)=cov(x~k) ,  x?,)) 

and i , j  are indicators denoting the serial numbers of the 
space-group operations by which the current positions of 
atoms k, n respectively were generated. In general, the 3 x 3 
covariance matrix relating atoms k and n is then given by 

0 T C(k . )  = PtC(k,)Ps (13) 

where P, and Pj are the corresponding rotat ion matrices 

0 and C(k,) is the available covariance matrix related to the 
reference asymmetric unit. This can be readily shown using 
the methods of Sands (1966). Of course, the matrix C(k,) 
will usually have one of the following forms: C °, PC °, 
C°P r or PC°P r unless more than one non-trivial symmetry 
operation is involved. In the case of equation (10), i.e. 
neglecting covariances involving different atoms, only the 
forms C o and PC°P r will appear. 

Analogous expressions for the variances of an inter- 
atomic distance and an angle defined by two interatomic 
vectors can be easily derived using tensor and vector nota- 
tions which appear, in many cases, to combine conciseness, 
generality and suitability for computer programming. 

A numerical test carried out with equations (9) and (10) 
suggests that the effect of including covariances is similar 
to that observed in calculations of standard deviations of 
distances and angles, the discrepancies being sometimes 
as large as 20-25 % of the values given by (9). The example 
concerned a monoclinic structure with x - z  correlation co- 
efficients of the order of 0.3, but no symmetry-related atoms 
were involved in the calculation. 

I wish to thank Mr W. Polder and Dr A. J. Wagner for 
the data used in the test calculation and Rietje Vaillant 
for typing the manuscript. 

APPENDIX 

We wish to show that the relation 

(uxv) .  ( w x z ) = ( u .  w) (v. z ) - ( u ,  z) (v. w) (A1) 

is valid in an oblique system of coordinates. Representing 
the pairs of vectors u,v and w,z in terms of their contra- 
variant and covariant components respectively, we have 

u x v = VelskuJvka t -  G (A2) 

w x z = V -  leZm"wmz.at - H (A3) 

where V is the volume of the unit cell, al, a2,a 3 are the 
recip?ocal vectors a*,b*,c* respectively and ezjdetJk), 
known as the Levi-Civita tensor, equals + 1 , -  1 or zero 
according as i jk  are a cyclic permutation of 123, a non- 
cyclic permutation of 123 or any two indices are equal 
respectively. 

Since a t . az = 6~ and making use of the well-known rela- 
tion tion 

e ,,Ira,,_ m ,, 6,,,~m (A4) ljk~ -- ~J ~k-- j~'k , 

the scalar product of G and H readily reduces to 

G .  H = l l m w m V n Z n  - -  [lmzmVnWn 

= (u . w) (v . z ) -  (u . z) (v . w) (A5) 

which was to be shown. The proof  is far more tedious if a 
different representation of u, v, w and z is chosen. 

References 

HUBER-BUSER, E. & DUNITZ, J. D. (1961). Helv .  Chem.  
Ac ta ,  44, 2027-2033. 

PATTERSON, A. L. (1959). In In terna t iona l  Tables  f o r  ](-ray 
Crys ta l lography ,  Vol. II. Birmingham: Kynoch Press. 

SANDS, D. E. (1966). A c t a  Cryst .  21, 868-872. 
S T A N F O R D ,  R .  H .  J R  t ~  W A S E R ,  J .  (1972). A c t a  C r y s t .  A28, 

213-215. 
WASER, J. (1973). A c t a  Cryst .  A29, 621-631. 


